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Since the initial domestication of the rock pigeon in Neolithic times (1), 
breeders have selected striking differences in behavior, vocalizations, 
skeletal morphology, feather ornaments, colors, and color patterns to 
establish over 350 breeds (2). In many cases, the number and magnitude 
of differences among breeds are more characteristic of macroevolution-
ary changes than of changes within a single species (2, 3). Indeed, 
Charles Darwin was so fascinated by domestic pigeons that he repeated-
ly called attention to this dramatic example of diversity within a species 
to communicate his ideas about natural selection (3, 4). 

The genetic architecture for many derived traits in pigeons is proba-
bly relatively simple (5, 6), probably more so than that for interspecific 
trait variation among many wild species, because breeders often focus on 
qualitative rather than quantitative variation; this increases the chance of 
identifying genes responsible for differences among breeds. Additional-
ly, several morphological traits show similar patterns of variation in 
different breeds, making it possible to test whether the same or different 
genes underlie similar phenotypes. Despite these advantages, the pigeon 
is underused as a model for the molecular genetic basis of avian varia-
tion because of the paucity of genetic and genomic resources for this 
bird. 

We examined genomic diversity, genetic structure, and phylogenetic 
relationships among domestic breeds and feral populations (free-living 
birds descended from escaped domestics) of the rock pigeon. The pigeon 
reference genome was sequenced from a male Danish tumbler with the 
Illumina HiSeq 2000 platform, and we also resequenced 40 additional 
Columba livia genomes to 8- to 26-fold coverage (38 individuals from 
36 domestic breeds and two feral pigeons) (7). Genome-wide nucleotide 

diversity in the rock pigeon (π = 3.6 × 
10−3) and the mutation rate estimate in 
the pigeon lineage (1.42 × 10−9 substi-
tutions per site per year ± 2.60 × 10−12 
SE) are comparable to those of other 
avian species (8, 9). The observed het-
erozygosity indicates a large effective 
population size for the rock pigeon of 
Ne ≈ 521,000; demographic inferences 
based on the allele frequency spectrum 
indicate that, aside from a very recent 
bottleneck, Ne has been remarkably 
stable over the past 1.5 million genera-
tions (7). 

Patterns of linkage disequilibrium 
(LD) are indicative of haplotype sizes 
and genome-wide recombination rates 
and inform decisions about genetic 
mapping strategies. Using genotype 
data from the 40 resequenced C. livia 
genomes, we found that mean “useful 
LD” (10) (coefficient of determination, 
r2 > 0.3) decays in 2.2 kb (fig. S10J). 
This suggests that we should expect 
little LD between typical pairs of genes 
in an analysis across breeds; thus, the 
pigeon is well suited for association-
mapping strategies. 

We leveraged our whole-genome 
data to determine breed relationships, 
using 1.48 million variable loci. A 
neighbor-joining tree rooted on C. 
rupestris, the sister species of C. livia 
(11), yielded several well-supported 
groups (Fig. 1 and fig. S16). Notably, 
the two feral pigeons grouped with the 

wattle and homer breeds (Fig. 1, pink branches), supporting the idea that 
escaped racing homers are probably major contributors to feral popula-
tions (12). As with many domesticated species, pigeon evolution is 
probably not exclusively linear or hierarchical (12). We therefore exam-
ined genetic structure among breeds by analyzing 3950 loci with 
ADMIXTURE (13) and found a best model fit at K = 1 (a single popula-
tion, where K is the number of assumed ancestral populations). Howev-
er, higher values of K can also be biologically informative (figs. S17 to 
S20). Our analysis includes some of the oldest lineages of domestic pi-
geons and breeds that were not exported from the Middle East until the 
late 19th or early 20th centuries (14), providing information about likely 
geographic origins of breeds and their exchange along ancient trade 
routes (7). 

Derived traits in domesticated birds tend to evolve along a predicta-
ble temporal trajectory, with color variation appearing in the earliest 
stages of domestication, followed by plumage and structural (skeletal 
and soft tissue) variation, and finally behavioral differences (2). One of 
the genetically simplest derived traits of pigeons is the head crest. Head 
crests are common ornaments in many bird species (2) and are important 
display structures in mate selection (15). In pigeons, head crests consist 
of neck and occipital feathers with reversed growth polarity, so that the 
feathers grow toward the top of the head instead of down the neck. 
Crests can be as small and simple as a peak of feathers or as elaborate as 
the hood of the Jacobin, which envelops the head (Fig. 2A). Classical 
genetics experiments suggest that the head crest segregates as a simple 
Mendelian recessive trait (6, 14). Moreover, previous studies suggest 
that the same locus controls the presence of a crest in numerous breeds, 

Genomic Diversity and Evolution of the 
Head Crest in the Rock Pigeon 
Michael D. Shapiro,1† Zev Kronenberg,2 Cai Li,3,4 Eric T. Domyan,1 Hailin Pan,3 
Michael Campbell,2 Hao Tan,3 Chad D. Huff,2,5 Haofu Hu,3 Anna I. Vickrey,1 
Sandra C. A. Nielsen,4 Sydney A. Stringham,1 Hao Hu,5 Eske Willerslev,4 M. 
Thomas P. Gilbert,4,6 Mark Yandell,2 Guojie Zhang,3 Jun Wang3,7,8† 
1Department of Biology, University of Utah, Salt Lake City, UT 84112, USA. 2Department of Human 
Genetics, University of Utah, Salt Lake City, UT 84112, USA. 3BGI-Shenzhen, Shenzhen, 518083, China. 
4Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 
5-7, 1350 Copenhagen, Denmark. 5Department of Epidemiology, University of Texas M. D. Anderson 
Cancer Center, Houston, TX 77030, USA. 6Ancient DNA Laboratory, Murdoch University, Perth, Western 
Australia 6150, Australia. 7Department of Biology, University of Copenhagen, DK-1165 Copenhagen, 
Denmark. 8Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-
1165 Copenhagen, Denmark. 

†To whom correspondence should be addressed. E-mail: mike.shapiro@utah.edu (M.D.S.); 
wangj@genomics.org.cn (J.W.) 

The geographic origins of breeds and the genetic basis of variation within the 
widely distributed and phenotypically diverse domestic rock pigeon (Columba livia) 
remain largely unknown. We generated a rock pigeon reference genome and 
additional genome sequences representing domestic and feral populations. We 
found evidence for the origins of major breed groups in the Middle East and 
contributions from a racing breed to North American feral populations. We identified 
the gene EphB2 as a strong candidate for the derived head crest phenotype shared 
by numerous breeds, an important trait in mate selection in many avian species. We 
also found evidence that this trait evolved just once and spread throughout the 
species, and that the crest originates early in development by the localized 
molecular reversal of feather bud polarity. 
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either with alternative alleles at this locus or additional modifier loci 
controlling the extent of crest development (6, 14). 

We resequenced eight individuals with head crests to directly test 
whether the same mutation controls crest development in different 
breeds. We sorted genomic variants from birds with and without head 
crests into separate bins and calculated allele frequency differentiation 
(FST) across the genome (Fig. 2B). We identified a region of high differ-
entiation between crested and uncrested birds in the pigeon ortholog of 
Ephrin receptor B2 (EphB2; FST = 0.94, top hit genome-wide; fig. 
S22A) (Fig. 2D). The role of EphB2 in feather growth is not known, but 
it plays important roles in tissue patterning and morphogenesis and is a 
member of a receptor tyrosine kinase family that mediates development 
of the feather cytoskeleton (16, 17). All eight crested birds were homo-
zygous for a T nucleotide at scaffold 612, position 596613 (hereafter, the 
cr allele), whereas uncrested birds were heterozygous (n = 3) or homo-
zygous (n = 30, including the uncrested outgroup C. rupestris) for the 
putatively ancestral C nucleotide (the + allele). These results were con-
sistent with the known simple recessive architecture of the trait and im-
plicated a common polymorphism associated with head crest 
development in multiple breeds with different genetic histories (Fig. 1). 
This trend extended well beyond our resequencing panel: We genotyped 
an additional 61 crested birds from 22 breeds and 69 uncrested birds 
from 57 breeds, and found a perfect association between cr/cr genotype 
and the crest phenotype (Fig. 2F). By treating the genomes of crested 
and uncrested birds as separate populations, we also found suggestive 
evidence for positive selection around the cr allele using cross-
population extended haplotype homozygosity analysis (Fig. 2D and figs. 
S21 and S22B). 

We then used the Variant Annotation, Analysis, and Search Tool 
[VAAST (18)] to investigate the pigeon genomes for additional coding 
changes associated with the head crest phenotype. This identified one 
gene with genome-wide significance: EphB2, and specifically the cr 
single-nucleotide polymorphism (SNP) (Pgenome = 2.0 × 10−8) (Fig. 2, C 
and D). The cr allele has a predicted charge-changing arginine (basic) to 
cysteine (polar uncharged) transition in the catalytic loop of the intracel-
lular tyrosine kinase domain of EphB2 (Fig. 2E). This amino acid posi-
tion is invariant among other vertebrates, suggesting strong purifying 
selection for conserved protein function. The same DLAARN to 
DLAACN motif change we observe in EphB2 is sufficient to abrogate 
kinase activity in human and mouse orthologs of the protein tyrosine 
kinase ZAP-70, and in both mammals and pigeons the mutant pheno-
types are inherited recessively (19). Hence, the pigeon cr mutation prob-
ably abrogates kinase activity in EphB2 and disrupts downstream signal 
propagation, consistent with the high VAAST score for this gene. EphB2 
is therefore a convincing candidate for the cr locus of classical pigeon 
genetics (5–7, 14). 

In several wild and domesticated species, the repeated evolution of a 
derived trait has occurred by selection on the same gene, possibly due to 
the repeated selection on the same allele or haplotype (20–22). Similarly, 
the cr SNP is part of a 27.4-kb haplotype that is shared by all crested 
pigeons, suggesting that the mutation occurred just once and spread to 
multiple breeds by introgression among domestic breeds, or was selected 
repeatedly from a standing variant in wild rock pigeons (Fig. 2G and fig. 
S23; the core haplotype containing the cr mutation is reduced to 11 kb 
when uncrested heterozygotes are included). The only gene present in 
the shared cr haplotype is EphB2 (Fig. 2D, green bar), although at this 
time we cannot rule out the presence of regulatory variants that might 
alter the expression of another gene. Crested members of the toy, fantail, 
Iranian, Jacobin, and owl breed groups are not more closely related to 
each other than to uncrested breeds (Fig. 1). Nevertheless, members of 
these groups had head crests hundreds of years ago (14), so some of 
these introgression events must have occurred in the distant past. Breeds 
with a wide variety of crest phenotypes share the same derived allele; 

therefore, allelic variation at the cr locus alone does not control all as-
pects of crest development (14). Other genetic and developmental fac-
tors beyond this locus must contribute to variation in crest morphology, 
akin to the presumed complex genetic architecture of species-level di-
vergence in feather ornaments (2). 

In crested pigeons, feather placode polarity and bud outgrowth are 
inverted during embryogenesis (Fig. 3). Expression of EphB2 is not 
polarized in early placodes (fig. S26), so the effects of the cr mutation on 
feather polarity are probably exerted earlier in development. Why might 
the crest phenotype be limited to the head and neck? In Naked neck 
chicken mutants, regionalized production of retinoic acid allows uniform 
up-regulation of Bmp7 expression to change skin phenotypes in the neck 
but not the body (23). Similarly, the head crests of several chicken 
breeds, in which feathers are elongated but do not have a reversed 
growth trajectory as in pigeons, are localized to the top of the head, 
probably due to ectopic expression of Hox positional cues (24). Together 
these examples provide evidence for regionalization of the developing 
head and neck skin in the chicken. We propose that analogous mecha-
nisms might underlie skin regionalization in the pigeon and allow cr to 
change feather polarity in the occiput and neck, but not elsewhere. 

Our study of domestic rock pigeons illustrates how combining com-
parative genomics and population-based analyses forwards our under-
standing of genetic relationships and the genomic basis of traits. Many 
of the traits that vary among pigeon breeds also vary among wild species 
of birds and other animals (2, 25); thus, pigeons are a model for identify-
ing the genetic basis of variation in traits of general interest. Moreover, 
variation in many traits in domestic pigeons, including the head crest 
phenotype described here, is constructive rather than regressive: Breeds 
derived from the ancestral rock pigeon possess traits that the ancestor 
does not have. Although adaptive regressive traits are important, the 
genetic basis of constructive traits in vertebrates remains comparatively 
poorly understood. The domestic pigeon is thus a promising model with 
which to explore the genetic architecture of derived, constructive pheno-
types in a bird that is amenable to genetic, genomic, and developmental 
investigation. 
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Fig. 1. Relationships among rock pigeons and the hill pigeon C. rupestris. A consensus neighbor-joining tree based 
on 1.48 million genomic SNPs and 1000 bootstrap replicates (see fig. S16 for bootstrap support) is shown. 
Branches are colored according to traditional breed groups (12) and/or geographic affinities: orange, toy breeds; 
brown, pouters and utility breeds; light blue, Indian and Iranian breeds; green, tumblers and highflyers; pink, homers 
and wattle breeds; red, Mediterranean and owl breeds; black, voice characteristics (14). Bold red lettering indicates 
breeds with the head crest phenotype. Scale bar, Euclidean distance. [Photo credits: T. Hellmann (domestic breeds) 
and M. V. Shreeram (C. rupestris)] 
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Fig. 2. EphB2 is associated with the derived head crest phenotype. (A) Head crests are variable among breeds 
(left to right: Indian fantail, Old German owl, Old Dutch capuchin, Jacobin). (B) FST between crested and uncrested 
pigeons, with maximum value for individual SNPs plotted for nonoverlapping 100-kb windows across the genome. 
Red star, window with the highest score. Dashed red line, top 1% of scores. (C) Genome-wide VAAST scan. Each 
dot represents a single gene. Red star, gene with the highest score. Dashed red line, genome-wide significance 
cutoff. (D) Magnification of scaffold 612 in shaded region of (B) and (C). Black trace, maximum FST between 
crested and uncrested birds over a 300-SNP window. Red trace, unstandardized cross-population extended 
haplotype homozygosity (XP-EHH); higher values are evidence of selection (see fig. S21, genome-wide plot). 
Dashed vertical line, position of the lone genome-wide significant VAAST hit. Green bar, the 27.4-kb haplotype 
shared by all crested birds, includes only the EphB2 gene. Blue bars, gene predictions on + and – DNA strands. 
(E) The cr mutation induces a charge-changing amino acid substitution; black bar, highly conserved DLAARN 
motif of catalytic loop. (F) Genotypes of 159 birds from 79 breeds at the cr locus are perfectly associated with the 
crest phenotype under a recessive model. (G) Network diagram of the minimal 11-kb haplotype shared by all 
resequenced rock pigeons with the cr mutation (also see fig. S23). Many haplotypes contain the + allele (blue), but 
only one contains the cr SNP (red). The sizes of the circles are proportional to the number of chromosomes 
containing a haplotype. Line segments represent single-nucleotide differences. [Jacobin photo credit: T. Hellmann] 
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Fig. 3. Feather bud polarity is reversed in the cr mutant. (A and B) Expression of 
the feather structural gene Ctnnb1 reveals the direction of outgrowth of early feather 
buds. St., Hamburger-Hamilton embryonic stage. (A) Neck and occipital head 
expression of Ctnnb1 in an embryo of the uncrested racing homer. Feather buds 
point downward along the contour of the head and neck (arrowheads). (B) Occipital 
feather buds point upward in the equivalent region of the crested English trumpeter, 
indicating morphological reversal of feather orientation. (C and D) Expression of the 
polarity marker EphA4 was assayed at an earlier developmental stage to test 
whether feather placodes, the ectodermal thickenings that give rise to feather buds, 
are also reversed. (C) Polarity marker EphA4 is expressed posteriorly (arrowheads) 
in feather placodes of the racing homer. (D) The polarity of placodes is reversed in 
the English trumpeter. Expression of EphB2 in the skin is weak and unpolarized at 
this stage in both morphs (fig. S26). 
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